MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. Type 4 Magnetic Alloy

5056 aluminum belongs to the aluminum alloys classification, while Type 4 magnetic alloy belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is Type 4 magnetic alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 4.9 to 31
2.0 to 40
Fatigue Strength, MPa 140 to 200
220 to 400
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 25
73
Shear Strength, MPa 170 to 240
420 to 630
Tensile Strength: Ultimate (UTS), MPa 290 to 460
620 to 1100
Tensile Strength: Yield (Proof), MPa 150 to 410
270 to 1040

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 190
900
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 570
1370
Specific Heat Capacity, J/kg-K 910
440
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 99
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.7
8.8
Embodied Carbon, kg CO2/kg material 9.0
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 140
22 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1220
190 to 2840
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 51
22
Strength to Weight: Axial, points 30 to 48
19 to 35
Strength to Weight: Bending, points 36 to 50
18 to 27
Thermal Shock Resistance, points 13 to 20
21 to 37

Alloy Composition

Aluminum (Al), % 93 to 95.4
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0.050 to 0.2
0 to 0.3
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0 to 0.4
9.5 to 17.5
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.050 to 0.2
0 to 0.8
Molybdenum (Mo), % 0
3.5 to 6.0
Nickel (Ni), % 0
79 to 82
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.3
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0

Comparable Variants