MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. C17510 Copper

5056 aluminum belongs to the aluminum alloys classification, while C17510 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is C17510 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
120
Elongation at Break, % 4.9 to 31
5.4 to 37
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 25
44
Shear Strength, MPa 170 to 240
210 to 500
Tensile Strength: Ultimate (UTS), MPa 290 to 460
310 to 860
Tensile Strength: Yield (Proof), MPa 150 to 410
120 to 750

Thermal Properties

Latent Heat of Fusion, J/g 400
220
Maximum Temperature: Mechanical, °C 190
220
Melting Completion (Liquidus), °C 640
1070
Melting Onset (Solidus), °C 570
1030
Specific Heat Capacity, J/kg-K 910
390
Thermal Conductivity, W/m-K 130
210
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
22 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 99
23 to 54

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
49
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 9.0
4.2
Embodied Energy, MJ/kg 150
65
Embodied Water, L/kg 1180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 140
39 to 92
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1220
64 to 2410
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 51
18
Strength to Weight: Axial, points 30 to 48
9.7 to 27
Strength to Weight: Bending, points 36 to 50
11 to 23
Thermal Diffusivity, mm2/s 53
60
Thermal Shock Resistance, points 13 to 20
11 to 30

Alloy Composition

Aluminum (Al), % 93 to 95.4
0 to 0.2
Beryllium (Be), % 0
0.2 to 0.6
Chromium (Cr), % 0.050 to 0.2
0
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 0 to 0.1
95.9 to 98.4
Iron (Fe), % 0 to 0.4
0 to 0.1
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.050 to 0.2
0
Nickel (Ni), % 0
1.4 to 2.2
Silicon (Si), % 0 to 0.3
0 to 0.2
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5