MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. C28000 Muntz Metal

5056 aluminum belongs to the aluminum alloys classification, while C28000 Muntz Metal belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is C28000 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
100
Elongation at Break, % 4.9 to 31
10 to 45
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 25
40
Shear Strength, MPa 170 to 240
230 to 330
Tensile Strength: Ultimate (UTS), MPa 290 to 460
330 to 610
Tensile Strength: Yield (Proof), MPa 150 to 410
150 to 370

Thermal Properties

Latent Heat of Fusion, J/g 400
170
Maximum Temperature: Mechanical, °C 190
120
Melting Completion (Liquidus), °C 640
900
Melting Onset (Solidus), °C 570
900
Specific Heat Capacity, J/kg-K 910
390
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
28
Electrical Conductivity: Equal Weight (Specific), % IACS 99
31

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 9.0
2.7
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1180
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 140
27 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1220
110 to 670
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 51
20
Strength to Weight: Axial, points 30 to 48
11 to 21
Strength to Weight: Bending, points 36 to 50
13 to 20
Thermal Diffusivity, mm2/s 53
40
Thermal Shock Resistance, points 13 to 20
11 to 20

Alloy Composition

Aluminum (Al), % 93 to 95.4
0
Chromium (Cr), % 0.050 to 0.2
0
Copper (Cu), % 0 to 0.1
59 to 63
Iron (Fe), % 0 to 0.4
0 to 0.070
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.050 to 0.2
0
Silicon (Si), % 0 to 0.3
0
Zinc (Zn), % 0 to 0.1
36.3 to 41
Residuals, % 0
0 to 0.3