MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. C69400 Brass

5056 aluminum belongs to the aluminum alloys classification, while C69400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is C69400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
110
Elongation at Break, % 4.9 to 31
17
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
42
Shear Strength, MPa 170 to 240
350
Tensile Strength: Ultimate (UTS), MPa 290 to 460
570
Tensile Strength: Yield (Proof), MPa 150 to 410
270

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
920
Melting Onset (Solidus), °C 570
820
Specific Heat Capacity, J/kg-K 910
410
Thermal Conductivity, W/m-K 130
26
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
6.2
Electrical Conductivity: Equal Weight (Specific), % IACS 99
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
27
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 9.0
2.7
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1180
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 140
80
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1220
340
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 30 to 48
19
Strength to Weight: Bending, points 36 to 50
18
Thermal Diffusivity, mm2/s 53
7.7
Thermal Shock Resistance, points 13 to 20
20

Alloy Composition

Aluminum (Al), % 93 to 95.4
0
Chromium (Cr), % 0.050 to 0.2
0
Copper (Cu), % 0 to 0.1
80 to 83
Iron (Fe), % 0 to 0.4
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.050 to 0.2
0
Silicon (Si), % 0 to 0.3
3.5 to 4.5
Zinc (Zn), % 0 to 0.1
11.5 to 16.5
Residuals, % 0
0 to 0.5