MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. C70250 Copper

5056 aluminum belongs to the aluminum alloys classification, while C70250 copper belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is C70250 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
120
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 25
44
Tensile Strength: Ultimate (UTS), MPa 290 to 460
520 to 740

Thermal Properties

Latent Heat of Fusion, J/g 400
220
Maximum Temperature: Mechanical, °C 190
210
Melting Completion (Liquidus), °C 640
1100
Melting Onset (Solidus), °C 570
1080
Specific Heat Capacity, J/kg-K 910
390
Thermal Conductivity, W/m-K 130
170
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
36 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 99
37 to 51

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 9.0
2.9
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1180
310

Common Calculations

Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 51
18
Strength to Weight: Axial, points 30 to 48
16 to 23
Strength to Weight: Bending, points 36 to 50
16 to 21
Thermal Diffusivity, mm2/s 53
49
Thermal Shock Resistance, points 13 to 20
18 to 26

Alloy Composition

Aluminum (Al), % 93 to 95.4
0
Chromium (Cr), % 0.050 to 0.2
0
Copper (Cu), % 0 to 0.1
92.7 to 97.5
Iron (Fe), % 0 to 0.4
0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 4.5 to 5.6
0.050 to 0.3
Manganese (Mn), % 0.050 to 0.2
0 to 0.1
Nickel (Ni), % 0
2.2 to 4.2
Silicon (Si), % 0 to 0.3
0.25 to 1.2
Zinc (Zn), % 0 to 0.1
0 to 1.0
Residuals, % 0
0 to 0.5