MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. C85900 Brass

5056 aluminum belongs to the aluminum alloys classification, while C85900 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is C85900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
100
Elongation at Break, % 4.9 to 31
30
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 25
40
Tensile Strength: Ultimate (UTS), MPa 290 to 460
460
Tensile Strength: Yield (Proof), MPa 150 to 410
190

Thermal Properties

Latent Heat of Fusion, J/g 400
170
Maximum Temperature: Mechanical, °C 190
130
Melting Completion (Liquidus), °C 640
830
Melting Onset (Solidus), °C 570
790
Specific Heat Capacity, J/kg-K 910
390
Thermal Conductivity, W/m-K 130
89
Thermal Expansion, µm/m-K 24
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
25
Electrical Conductivity: Equal Weight (Specific), % IACS 99
28

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
24
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 9.0
2.9
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1180
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 140
110
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1220
170
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 51
20
Strength to Weight: Axial, points 30 to 48
16
Strength to Weight: Bending, points 36 to 50
17
Thermal Diffusivity, mm2/s 53
29
Thermal Shock Resistance, points 13 to 20
16

Alloy Composition

Aluminum (Al), % 93 to 95.4
0.1 to 0.6
Antimony (Sb), % 0
0 to 0.2
Boron (B), % 0
0 to 0.2
Chromium (Cr), % 0.050 to 0.2
0
Copper (Cu), % 0 to 0.1
58 to 62
Iron (Fe), % 0 to 0.4
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.050 to 0.2
0 to 0.010
Nickel (Ni), % 0
0 to 1.5
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.3
0 to 0.25
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0
0 to 1.5
Zinc (Zn), % 0 to 0.1
31 to 41
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.7