MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. S13800 Stainless Steel

5056 aluminum belongs to the aluminum alloys classification, while S13800 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 4.9 to 31
11 to 18
Fatigue Strength, MPa 140 to 200
410 to 870
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
77
Shear Strength, MPa 170 to 240
610 to 1030
Tensile Strength: Ultimate (UTS), MPa 290 to 460
980 to 1730
Tensile Strength: Yield (Proof), MPa 150 to 410
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 190
810
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 9.0
3.4
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1180
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 140
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1220
1090 to 5490
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 30 to 48
35 to 61
Strength to Weight: Bending, points 36 to 50
28 to 41
Thermal Diffusivity, mm2/s 53
4.3
Thermal Shock Resistance, points 13 to 20
33 to 58

Alloy Composition

Aluminum (Al), % 93 to 95.4
0.9 to 1.4
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0.050 to 0.2
12.3 to 13.2
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
73.6 to 77.3
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.050 to 0.2
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
7.5 to 8.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.3
0 to 0.1
Sulfur (S), % 0
0 to 0.0080
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0