MakeItFrom.com
Menu (ESC)

5056 Aluminum vs. S30615 Stainless Steel

5056 aluminum belongs to the aluminum alloys classification, while S30615 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5056 aluminum and the bottom bar is S30615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 4.9 to 31
39
Fatigue Strength, MPa 140 to 200
270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
75
Shear Strength, MPa 170 to 240
470
Tensile Strength: Ultimate (UTS), MPa 290 to 460
690
Tensile Strength: Yield (Proof), MPa 150 to 410
310

Thermal Properties

Latent Heat of Fusion, J/g 400
340
Maximum Temperature: Mechanical, °C 190
960
Melting Completion (Liquidus), °C 640
1370
Melting Onset (Solidus), °C 570
1320
Specific Heat Capacity, J/kg-K 910
500
Thermal Conductivity, W/m-K 130
14
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 9.0
3.7
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1180
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 140
220
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1220
260
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 30 to 48
25
Strength to Weight: Bending, points 36 to 50
23
Thermal Diffusivity, mm2/s 53
3.7
Thermal Shock Resistance, points 13 to 20
16

Alloy Composition

Aluminum (Al), % 93 to 95.4
0.8 to 1.5
Carbon (C), % 0
0.16 to 0.24
Chromium (Cr), % 0.050 to 0.2
17 to 19.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
56.7 to 65.3
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.050 to 0.2
0 to 2.0
Nickel (Ni), % 0
13.5 to 16
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.3
3.2 to 4.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0