MakeItFrom.com
Menu (ESC)

5056-O Aluminum vs. 7178-O Aluminum

Both 5056-O aluminum and 7178-O aluminum are aluminum alloys. Both are furnished in the annealed condition. They have a moderately high 91% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5056-O aluminum and the bottom bar is 7178-O aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
71
Elongation at Break, % 31
12
Fatigue Strength, MPa 140
120
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 25
27
Shear Strength, MPa 170
140
Tensile Strength: Ultimate (UTS), MPa 290
240
Tensile Strength: Yield (Proof), MPa 150
120

Thermal Properties

Latent Heat of Fusion, J/g 400
370
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 570
480
Specific Heat Capacity, J/kg-K 910
860
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
31
Electrical Conductivity: Equal Weight (Specific), % IACS 99
91

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
3.1
Embodied Carbon, kg CO2/kg material 9.0
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74
24
Resilience: Unit (Modulus of Resilience), kJ/m3 170
110
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
45
Strength to Weight: Axial, points 30
21
Strength to Weight: Bending, points 36
28
Thermal Diffusivity, mm2/s 53
47
Thermal Shock Resistance, points 13
10

Alloy Composition

Aluminum (Al), % 93 to 95.4
85.4 to 89.5
Chromium (Cr), % 0.050 to 0.2
0.18 to 0.28
Copper (Cu), % 0 to 0.1
1.6 to 2.4
Iron (Fe), % 0 to 0.4
0 to 0.5
Magnesium (Mg), % 4.5 to 5.6
2.4 to 3.1
Manganese (Mn), % 0.050 to 0.2
0 to 0.3
Silicon (Si), % 0 to 0.3
0 to 0.4
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.1
6.3 to 7.3
Residuals, % 0
0 to 0.15