MakeItFrom.com
Menu (ESC)

5056-O Aluminum vs. Annealed S66286 Stainless Steel

5056-O aluminum belongs to the aluminum alloys classification, while annealed S66286 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5056-O aluminum and the bottom bar is annealed S66286 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 31
40
Fatigue Strength, MPa 140
240
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
75
Shear Strength, MPa 170
420
Tensile Strength: Ultimate (UTS), MPa 290
620
Tensile Strength: Yield (Proof), MPa 150
280

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 190
920
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 570
1370
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
26
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 9.0
6.0
Embodied Energy, MJ/kg 150
87
Embodied Water, L/kg 1180
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74
200
Resilience: Unit (Modulus of Resilience), kJ/m3 170
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 30
22
Strength to Weight: Bending, points 36
20
Thermal Diffusivity, mm2/s 53
4.0
Thermal Shock Resistance, points 13
13

Alloy Composition

Aluminum (Al), % 93 to 95.4
0 to 0.35
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.050 to 0.2
13.5 to 16
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
49.1 to 59.5
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.050 to 0.2
0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0
24 to 27
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
1.9 to 2.4
Vanadium (V), % 0
0.1 to 0.5
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0