MakeItFrom.com
Menu (ESC)

5059 Aluminum vs. AISI 304LN Stainless Steel

5059 aluminum belongs to the aluminum alloys classification, while AISI 304LN stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5059 aluminum and the bottom bar is AISI 304LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 11 to 25
7.8 to 46
Fatigue Strength, MPa 170 to 240
200 to 440
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 220 to 250
400 to 680
Tensile Strength: Ultimate (UTS), MPa 350 to 410
580 to 1160
Tensile Strength: Yield (Proof), MPa 170 to 300
230 to 870

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Corrosion, °C 65
420
Maximum Temperature: Mechanical, °C 210
960
Melting Completion (Liquidus), °C 650
1420
Melting Onset (Solidus), °C 510
1380
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 95
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
16
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.1
3.1
Embodied Energy, MJ/kg 160
44
Embodied Water, L/kg 1160
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
83 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 650
140 to 1900
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 36 to 42
21 to 41
Strength to Weight: Bending, points 41 to 45
20 to 31
Thermal Diffusivity, mm2/s 44
4.0
Thermal Shock Resistance, points 16 to 18
13 to 26

Alloy Composition

Aluminum (Al), % 89.9 to 94
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.25
18 to 20
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.5
65 to 73.9
Magnesium (Mg), % 5.0 to 6.0
0
Manganese (Mn), % 0.6 to 1.2
0 to 2.0
Nickel (Ni), % 0
8.0 to 12
Nitrogen (N), % 0
0.1 to 0.16
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.45
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0.4 to 0.9
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0

Comparable Variants