MakeItFrom.com
Menu (ESC)

5059 Aluminum vs. ASTM A369 Grade FP9

5059 aluminum belongs to the aluminum alloys classification, while ASTM A369 grade FP9 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5059 aluminum and the bottom bar is ASTM A369 grade FP9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 11 to 25
20
Fatigue Strength, MPa 170 to 240
160
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 220 to 250
300
Tensile Strength: Ultimate (UTS), MPa 350 to 410
470
Tensile Strength: Yield (Proof), MPa 170 to 300
240

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 210
600
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 510
1410
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 110
26
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 95
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
6.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.1
2.0
Embodied Energy, MJ/kg 160
28
Embodied Water, L/kg 1160
87

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
80
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 650
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 36 to 42
17
Strength to Weight: Bending, points 41 to 45
17
Thermal Diffusivity, mm2/s 44
6.9
Thermal Shock Resistance, points 16 to 18
13

Alloy Composition

Aluminum (Al), % 89.9 to 94
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.25
8.0 to 10
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.5
87.1 to 90.3
Magnesium (Mg), % 5.0 to 6.0
0
Manganese (Mn), % 0.6 to 1.2
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.45
0.5 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0.4 to 0.9
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0