MakeItFrom.com
Menu (ESC)

5059 Aluminum vs. ASTM Grade HD Steel

5059 aluminum belongs to the aluminum alloys classification, while ASTM grade HD steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5059 aluminum and the bottom bar is ASTM grade HD steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 11 to 25
9.1
Fatigue Strength, MPa 170 to 240
140
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 350 to 410
590
Tensile Strength: Yield (Proof), MPa 170 to 300
270

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Corrosion, °C 65
460
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 650
1410
Melting Onset (Solidus), °C 510
1370
Specific Heat Capacity, J/kg-K 900
490
Thermal Conductivity, W/m-K 110
16
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 95
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
17
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 9.1
3.1
Embodied Energy, MJ/kg 160
45
Embodied Water, L/kg 1160
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
44
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 650
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
26
Strength to Weight: Axial, points 36 to 42
21
Strength to Weight: Bending, points 41 to 45
20
Thermal Diffusivity, mm2/s 44
4.3
Thermal Shock Resistance, points 16 to 18
19

Alloy Composition

Aluminum (Al), % 89.9 to 94
0
Carbon (C), % 0
0 to 0.5
Chromium (Cr), % 0 to 0.25
26 to 30
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.5
58.4 to 70
Magnesium (Mg), % 5.0 to 6.0
0
Manganese (Mn), % 0.6 to 1.2
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
4.0 to 7.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.45
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0.4 to 0.9
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0