MakeItFrom.com
Menu (ESC)

5059 Aluminum vs. ASTM Grade HL Steel

5059 aluminum belongs to the aluminum alloys classification, while ASTM grade HL steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5059 aluminum and the bottom bar is ASTM grade HL steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 11 to 25
11
Fatigue Strength, MPa 170 to 240
150
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 350 to 410
500
Tensile Strength: Yield (Proof), MPa 170 to 300
270

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Corrosion, °C 65
460
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 650
1390
Melting Onset (Solidus), °C 510
1340
Specific Heat Capacity, J/kg-K 900
490
Thermal Expansion, µm/m-K 24
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
27
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.1
4.5
Embodied Energy, MJ/kg 160
65
Embodied Water, L/kg 1160
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
48
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 650
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 36 to 42
18
Strength to Weight: Bending, points 41 to 45
18
Thermal Shock Resistance, points 16 to 18
11

Alloy Composition

Aluminum (Al), % 89.9 to 94
0
Carbon (C), % 0
0.2 to 0.6
Chromium (Cr), % 0 to 0.25
28 to 32
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.5
40.8 to 53.8
Magnesium (Mg), % 5.0 to 6.0
0
Manganese (Mn), % 0.6 to 1.2
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
18 to 22
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.45
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0.4 to 0.9
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0