MakeItFrom.com
Menu (ESC)

5059 Aluminum vs. ASTM Grade HP Steel

5059 aluminum belongs to the aluminum alloys classification, while ASTM grade HP steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5059 aluminum and the bottom bar is ASTM grade HP steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 11 to 25
5.1
Fatigue Strength, MPa 170 to 240
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Tensile Strength: Ultimate (UTS), MPa 350 to 410
490
Tensile Strength: Yield (Proof), MPa 170 to 300
260

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Corrosion, °C 65
440
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 650
1370
Melting Onset (Solidus), °C 510
1330
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 110
12
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 9.1
5.8
Embodied Energy, MJ/kg 160
82
Embodied Water, L/kg 1160
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
21
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 650
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 36 to 42
17
Strength to Weight: Bending, points 41 to 45
17
Thermal Diffusivity, mm2/s 44
3.2
Thermal Shock Resistance, points 16 to 18
11

Alloy Composition

Aluminum (Al), % 89.9 to 94
0
Carbon (C), % 0
0.35 to 0.75
Chromium (Cr), % 0 to 0.25
24 to 28
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.5
29.2 to 42.7
Magnesium (Mg), % 5.0 to 6.0
0
Manganese (Mn), % 0.6 to 1.2
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
33 to 37
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.45
0 to 2.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0.4 to 0.9
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0