MakeItFrom.com
Menu (ESC)

5059 Aluminum vs. EN 1.4662 Stainless Steel

5059 aluminum belongs to the aluminum alloys classification, while EN 1.4662 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5059 aluminum and the bottom bar is EN 1.4662 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 11 to 25
28
Fatigue Strength, MPa 170 to 240
430 to 450
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
79
Shear Strength, MPa 220 to 250
520 to 540
Tensile Strength: Ultimate (UTS), MPa 350 to 410
810 to 830
Tensile Strength: Yield (Proof), MPa 170 to 300
580 to 620

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Corrosion, °C 65
440
Maximum Temperature: Mechanical, °C 210
1090
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 510
1380
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 95
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
16
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 9.1
3.2
Embodied Energy, MJ/kg 160
45
Embodied Water, L/kg 1160
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
210
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 650
840 to 940
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 36 to 42
29 to 30
Strength to Weight: Bending, points 41 to 45
25
Thermal Diffusivity, mm2/s 44
3.9
Thermal Shock Resistance, points 16 to 18
22

Alloy Composition

Aluminum (Al), % 89.9 to 94
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.25
23 to 25
Copper (Cu), % 0 to 0.25
0.1 to 0.8
Iron (Fe), % 0 to 0.5
62.6 to 70.2
Magnesium (Mg), % 5.0 to 6.0
0
Manganese (Mn), % 0.6 to 1.2
2.5 to 4.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0
3.0 to 4.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.45
0 to 0.7
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0.4 to 0.9
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0