MakeItFrom.com
Menu (ESC)

5059 Aluminum vs. EN 1.4874 Stainless Steel

5059 aluminum belongs to the aluminum alloys classification, while EN 1.4874 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5059 aluminum and the bottom bar is EN 1.4874 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 11 to 25
6.7
Fatigue Strength, MPa 170 to 240
180
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 350 to 410
480
Tensile Strength: Yield (Proof), MPa 170 to 300
360

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Corrosion, °C 65
560
Maximum Temperature: Mechanical, °C 210
1150
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 510
1400
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 110
13
Thermal Expansion, µm/m-K 24
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 9.1
7.6
Embodied Energy, MJ/kg 160
110
Embodied Water, L/kg 1160
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
29
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 650
310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 36 to 42
16
Strength to Weight: Bending, points 41 to 45
16
Thermal Diffusivity, mm2/s 44
3.3
Thermal Shock Resistance, points 16 to 18
11

Alloy Composition

Aluminum (Al), % 89.9 to 94
0
Carbon (C), % 0
0.35 to 0.65
Chromium (Cr), % 0 to 0.25
19 to 22
Cobalt (Co), % 0
18.5 to 22
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.5
23 to 38.9
Magnesium (Mg), % 5.0 to 6.0
0
Manganese (Mn), % 0.6 to 1.2
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0
18 to 22
Niobium (Nb), % 0
0.75 to 1.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.45
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 0.4 to 0.9
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0