MakeItFrom.com
Menu (ESC)

5059 Aluminum vs. EN 1.4931 Steel

5059 aluminum belongs to the aluminum alloys classification, while EN 1.4931 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5059 aluminum and the bottom bar is EN 1.4931 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 11 to 25
17
Fatigue Strength, MPa 170 to 240
410
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 350 to 410
810
Tensile Strength: Yield (Proof), MPa 170 to 300
620

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 210
600
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 510
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 110
24
Thermal Expansion, µm/m-K 24
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
9.8
Electrical Conductivity: Equal Weight (Specific), % IACS 95
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
8.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.1
2.9
Embodied Energy, MJ/kg 160
42
Embodied Water, L/kg 1160
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
130
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 650
970
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 36 to 42
29
Strength to Weight: Bending, points 41 to 45
25
Thermal Diffusivity, mm2/s 44
6.5
Thermal Shock Resistance, points 16 to 18
22

Alloy Composition

Aluminum (Al), % 89.9 to 94
0
Carbon (C), % 0
0.2 to 0.26
Chromium (Cr), % 0 to 0.25
11.3 to 12.2
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.5
83.2 to 86.8
Magnesium (Mg), % 5.0 to 6.0
0
Manganese (Mn), % 0.6 to 1.2
0.5 to 0.8
Molybdenum (Mo), % 0
1.0 to 1.2
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.45
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
0 to 0.5
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 0.4 to 0.9
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0