MakeItFrom.com
Menu (ESC)

5059 Aluminum vs. EN 1.8880 Steel

5059 aluminum belongs to the aluminum alloys classification, while EN 1.8880 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5059 aluminum and the bottom bar is EN 1.8880 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 11 to 25
16
Fatigue Strength, MPa 170 to 240
470
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 220 to 250
510
Tensile Strength: Ultimate (UTS), MPa 350 to 410
830
Tensile Strength: Yield (Proof), MPa 170 to 300
720

Thermal Properties

Latent Heat of Fusion, J/g 390
260
Maximum Temperature: Mechanical, °C 210
420
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 510
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 110
40
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 95
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.7
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.1
1.9
Embodied Energy, MJ/kg 160
26
Embodied Water, L/kg 1160
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
130
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 650
1370
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 36 to 42
29
Strength to Weight: Bending, points 41 to 45
25
Thermal Diffusivity, mm2/s 44
11
Thermal Shock Resistance, points 16 to 18
24

Alloy Composition

Aluminum (Al), % 89.9 to 94
0
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.25
0 to 1.5
Copper (Cu), % 0 to 0.25
0 to 0.3
Iron (Fe), % 0 to 0.5
91.9 to 100
Magnesium (Mg), % 5.0 to 6.0
0
Manganese (Mn), % 0.6 to 1.2
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 0
0 to 2.5
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.45
0 to 0.8
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0 to 0.050
Vanadium (V), % 0
0 to 0.12
Zinc (Zn), % 0.4 to 0.9
0
Zirconium (Zr), % 0.050 to 0.25
0 to 0.15
Residuals, % 0 to 0.15
0