MakeItFrom.com
Menu (ESC)

5059 Aluminum vs. EN 2.4632 Nickel

5059 aluminum belongs to the aluminum alloys classification, while EN 2.4632 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5059 aluminum and the bottom bar is EN 2.4632 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 11 to 25
17
Fatigue Strength, MPa 170 to 240
430
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
76
Shear Strength, MPa 220 to 250
770
Tensile Strength: Ultimate (UTS), MPa 350 to 410
1250
Tensile Strength: Yield (Proof), MPa 170 to 300
780

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 210
1010
Melting Completion (Liquidus), °C 650
1340
Melting Onset (Solidus), °C 510
1290
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 110
13
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 95
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 9.1
9.4
Embodied Energy, MJ/kg 160
130
Embodied Water, L/kg 1160
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
180
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 650
1570
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 36 to 42
42
Strength to Weight: Bending, points 41 to 45
31
Thermal Diffusivity, mm2/s 44
3.3
Thermal Shock Resistance, points 16 to 18
39

Alloy Composition

Aluminum (Al), % 89.9 to 94
1.0 to 2.0
Boron (B), % 0
0 to 0.020
Carbon (C), % 0
0 to 0.13
Chromium (Cr), % 0 to 0.25
18 to 21
Cobalt (Co), % 0
15 to 21
Copper (Cu), % 0 to 0.25
0 to 0.2
Iron (Fe), % 0 to 0.5
0 to 1.5
Magnesium (Mg), % 5.0 to 6.0
0
Manganese (Mn), % 0.6 to 1.2
0 to 1.0
Nickel (Ni), % 0
49 to 64
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.45
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
2.0 to 3.0
Zinc (Zn), % 0.4 to 0.9
0
Zirconium (Zr), % 0.050 to 0.25
0 to 0.15
Residuals, % 0 to 0.15
0