MakeItFrom.com
Menu (ESC)

5059 Aluminum vs. Grade CU5MCuC Nickel

5059 aluminum belongs to the aluminum alloys classification, while grade CU5MCuC nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5059 aluminum and the bottom bar is grade CU5MCuC nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 11 to 25
22
Fatigue Strength, MPa 170 to 240
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 350 to 410
580
Tensile Strength: Yield (Proof), MPa 170 to 300
270

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 210
980
Melting Completion (Liquidus), °C 650
1420
Melting Onset (Solidus), °C 510
1370
Specific Heat Capacity, J/kg-K 900
460
Thermal Expansion, µm/m-K 24
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
45
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 9.1
7.7
Embodied Energy, MJ/kg 160
110
Embodied Water, L/kg 1160
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
110
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 650
190
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 36 to 42
20
Strength to Weight: Bending, points 41 to 45
19
Thermal Shock Resistance, points 16 to 18
16

Alloy Composition

Aluminum (Al), % 89.9 to 94
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.25
19.5 to 23.5
Copper (Cu), % 0 to 0.25
1.5 to 3.5
Iron (Fe), % 0 to 0.5
22.2 to 37.9
Magnesium (Mg), % 5.0 to 6.0
0
Manganese (Mn), % 0.6 to 1.2
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
38 to 44
Niobium (Nb), % 0
0.6 to 1.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.45
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0.4 to 0.9
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0