MakeItFrom.com
Menu (ESC)

5059 Aluminum vs. SAE-AISI 4340 Steel

5059 aluminum belongs to the aluminum alloys classification, while SAE-AISI 4340 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5059 aluminum and the bottom bar is SAE-AISI 4340 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 11 to 25
12 to 22
Fatigue Strength, MPa 170 to 240
330 to 740
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 220 to 250
430 to 770
Tensile Strength: Ultimate (UTS), MPa 350 to 410
690 to 1280
Tensile Strength: Yield (Proof), MPa 170 to 300
470 to 1150

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 210
430
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 510
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 110
44
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 95
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.1
1.7
Embodied Energy, MJ/kg 160
22
Embodied Water, L/kg 1160
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
79 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 650
590 to 3490
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 36 to 42
24 to 45
Strength to Weight: Bending, points 41 to 45
22 to 33
Thermal Diffusivity, mm2/s 44
12
Thermal Shock Resistance, points 16 to 18
20 to 38

Alloy Composition

Aluminum (Al), % 89.9 to 94
0
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0 to 0.25
0.7 to 0.9
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.5
95.1 to 96.3
Magnesium (Mg), % 5.0 to 6.0
0
Manganese (Mn), % 0.6 to 1.2
0.6 to 0.8
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0
1.7 to 2.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.45
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0.4 to 0.9
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0

Comparable Variants