MakeItFrom.com
Menu (ESC)

5059 Aluminum vs. C82000 Copper

5059 aluminum belongs to the aluminum alloys classification, while C82000 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5059 aluminum and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
120
Elongation at Break, % 11 to 25
8.0 to 20
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
45
Tensile Strength: Ultimate (UTS), MPa 350 to 410
350 to 690
Tensile Strength: Yield (Proof), MPa 170 to 300
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 390
220
Maximum Temperature: Mechanical, °C 210
220
Melting Completion (Liquidus), °C 650
1090
Melting Onset (Solidus), °C 510
970
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 110
260
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
45
Electrical Conductivity: Equal Weight (Specific), % IACS 95
46

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 9.1
5.0
Embodied Energy, MJ/kg 160
77
Embodied Water, L/kg 1160
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
51 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 650
80 to 1120
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 36 to 42
11 to 22
Strength to Weight: Bending, points 41 to 45
12 to 20
Thermal Diffusivity, mm2/s 44
76
Thermal Shock Resistance, points 16 to 18
12 to 24

Alloy Composition

Aluminum (Al), % 89.9 to 94
0 to 0.1
Beryllium (Be), % 0
0.45 to 0.8
Chromium (Cr), % 0 to 0.25
0 to 0.1
Cobalt (Co), % 0
2.2 to 2.7
Copper (Cu), % 0 to 0.25
95.2 to 97.4
Iron (Fe), % 0 to 0.5
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 5.0 to 6.0
0
Manganese (Mn), % 0.6 to 1.2
0
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0 to 0.45
0 to 0.15
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0.4 to 0.9
0 to 0.1
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0
0 to 0.5