MakeItFrom.com
Menu (ESC)

5059 Aluminum vs. C92900 Bronze

5059 aluminum belongs to the aluminum alloys classification, while C92900 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5059 aluminum and the bottom bar is C92900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 11 to 25
9.1
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 350 to 410
350
Tensile Strength: Yield (Proof), MPa 170 to 300
190

Thermal Properties

Latent Heat of Fusion, J/g 390
190
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 650
1030
Melting Onset (Solidus), °C 510
860
Specific Heat Capacity, J/kg-K 900
370
Thermal Conductivity, W/m-K 110
58
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 95
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
35
Density, g/cm3 2.7
8.8
Embodied Carbon, kg CO2/kg material 9.1
3.8
Embodied Energy, MJ/kg 160
61
Embodied Water, L/kg 1160
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
27
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 650
170
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 36 to 42
11
Strength to Weight: Bending, points 41 to 45
13
Thermal Diffusivity, mm2/s 44
18
Thermal Shock Resistance, points 16 to 18
13

Alloy Composition

Aluminum (Al), % 89.9 to 94
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.25
82 to 86
Iron (Fe), % 0 to 0.5
0 to 0.2
Lead (Pb), % 0
2.0 to 3.2
Magnesium (Mg), % 5.0 to 6.0
0
Manganese (Mn), % 0.6 to 1.2
0
Nickel (Ni), % 0
2.8 to 4.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.45
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0.4 to 0.9
0 to 0.25
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0
0 to 0.7