MakeItFrom.com
Menu (ESC)

5059 Aluminum vs. C93700 Bronze

5059 aluminum belongs to the aluminum alloys classification, while C93700 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5059 aluminum and the bottom bar is C93700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
99
Elongation at Break, % 11 to 25
20
Fatigue Strength, MPa 170 to 240
90
Poisson's Ratio 0.33
0.35
Shear Modulus, GPa 26
37
Tensile Strength: Ultimate (UTS), MPa 350 to 410
240
Tensile Strength: Yield (Proof), MPa 170 to 300
130

Thermal Properties

Latent Heat of Fusion, J/g 390
170
Maximum Temperature: Mechanical, °C 210
140
Melting Completion (Liquidus), °C 650
930
Melting Onset (Solidus), °C 510
760
Specific Heat Capacity, J/kg-K 900
350
Thermal Conductivity, W/m-K 110
47
Thermal Expansion, µm/m-K 24
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
10
Electrical Conductivity: Equal Weight (Specific), % IACS 95
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
33
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 9.1
3.5
Embodied Energy, MJ/kg 160
57
Embodied Water, L/kg 1160
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
40
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 650
79
Stiffness to Weight: Axial, points 14
6.2
Stiffness to Weight: Bending, points 50
17
Strength to Weight: Axial, points 36 to 42
7.5
Strength to Weight: Bending, points 41 to 45
9.6
Thermal Diffusivity, mm2/s 44
15
Thermal Shock Resistance, points 16 to 18
9.4

Alloy Composition

Aluminum (Al), % 89.9 to 94
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.25
78 to 82
Iron (Fe), % 0 to 0.5
0 to 0.15
Lead (Pb), % 0
8.0 to 11
Magnesium (Mg), % 5.0 to 6.0
0
Manganese (Mn), % 0.6 to 1.2
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.45
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
9.0 to 11
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0.4 to 0.9
0 to 0.8
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0
0 to 1.0