MakeItFrom.com
Menu (ESC)

5059 Aluminum vs. S42300 Stainless Steel

5059 aluminum belongs to the aluminum alloys classification, while S42300 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5059 aluminum and the bottom bar is S42300 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 11 to 25
9.1
Fatigue Strength, MPa 170 to 240
440
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 220 to 250
650
Tensile Strength: Ultimate (UTS), MPa 350 to 410
1100
Tensile Strength: Yield (Proof), MPa 170 to 300
850

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Corrosion, °C 65
380
Maximum Temperature: Mechanical, °C 210
750
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 510
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 110
25
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
4.5
Electrical Conductivity: Equal Weight (Specific), % IACS 95
5.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.1
3.2
Embodied Energy, MJ/kg 160
44
Embodied Water, L/kg 1160
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
93
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 650
1840
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 36 to 42
39
Strength to Weight: Bending, points 41 to 45
30
Thermal Diffusivity, mm2/s 44
6.8
Thermal Shock Resistance, points 16 to 18
40

Alloy Composition

Aluminum (Al), % 89.9 to 94
0
Carbon (C), % 0
0.27 to 0.32
Chromium (Cr), % 0 to 0.25
11 to 12
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.5
82 to 85.1
Magnesium (Mg), % 5.0 to 6.0
0
Manganese (Mn), % 0.6 to 1.2
1.0 to 1.4
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.45
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0.4 to 0.9
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0