MakeItFrom.com
Menu (ESC)

5059 Aluminum vs. S44635 Stainless Steel

5059 aluminum belongs to the aluminum alloys classification, while S44635 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5059 aluminum and the bottom bar is S44635 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 11 to 25
23
Fatigue Strength, MPa 170 to 240
390
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
81
Shear Strength, MPa 220 to 250
450
Tensile Strength: Ultimate (UTS), MPa 350 to 410
710
Tensile Strength: Yield (Proof), MPa 170 to 300
580

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Corrosion, °C 65
610
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 510
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 110
16
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 95
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
22
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.1
4.4
Embodied Energy, MJ/kg 160
62
Embodied Water, L/kg 1160
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42 to 75
150
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 650
810
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 36 to 42
25
Strength to Weight: Bending, points 41 to 45
23
Thermal Diffusivity, mm2/s 44
4.4
Thermal Shock Resistance, points 16 to 18
23

Alloy Composition

Aluminum (Al), % 89.9 to 94
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0 to 0.25
24.5 to 26
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.5
61.5 to 68.5
Magnesium (Mg), % 5.0 to 6.0
0
Manganese (Mn), % 0.6 to 1.2
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 0
3.5 to 4.5
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.45
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0.2 to 0.8
Zinc (Zn), % 0.4 to 0.9
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0