MakeItFrom.com
Menu (ESC)

5070 Aluminum vs. 5005A Aluminum

Both 5070 aluminum and 5005A aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5070 aluminum and the bottom bar is 5005A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
68
Elongation at Break, % 20
1.1 to 21
Fatigue Strength, MPa 150
38 to 82
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 190
71 to 130
Tensile Strength: Ultimate (UTS), MPa 300
110 to 230
Tensile Strength: Yield (Proof), MPa 140
43 to 210

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 640
660
Melting Onset (Solidus), °C 550
630
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
200
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
52
Electrical Conductivity: Equal Weight (Specific), % IACS 100
170

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.8
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
2.0 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 150
14 to 310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 31
12 to 24
Strength to Weight: Bending, points 37
19 to 31
Thermal Diffusivity, mm2/s 53
82
Thermal Shock Resistance, points 14
5.0 to 10

Alloy Composition

Aluminum (Al), % 92.4 to 95.7
97.5 to 99.3
Chromium (Cr), % 0 to 0.3
0 to 0.1
Copper (Cu), % 0 to 0.25
0 to 0.050
Iron (Fe), % 0 to 0.4
0 to 0.45
Magnesium (Mg), % 3.5 to 4.5
0.7 to 1.1
Manganese (Mn), % 0.4 to 0.8
0 to 0.15
Silicon (Si), % 0 to 0.25
0 to 0.3
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0.4 to 0.8
0 to 0.2
Residuals, % 0
0 to 0.15