MakeItFrom.com
Menu (ESC)

5070 Aluminum vs. EN 2.4665 Nickel

5070 aluminum belongs to the aluminum alloys classification, while EN 2.4665 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5070 aluminum and the bottom bar is EN 2.4665 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 20
34
Fatigue Strength, MPa 150
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 190
520
Tensile Strength: Ultimate (UTS), MPa 300
790
Tensile Strength: Yield (Proof), MPa 140
300

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 190
990
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 24
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 8.8
9.2
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1170
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
210
Resilience: Unit (Modulus of Resilience), kJ/m3 150
220
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 31
26
Strength to Weight: Bending, points 37
22
Thermal Diffusivity, mm2/s 53
3.2
Thermal Shock Resistance, points 14
20

Alloy Composition

Aluminum (Al), % 92.4 to 95.7
0 to 0.5
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0 to 0.3
20.5 to 23
Cobalt (Co), % 0
0.5 to 2.5
Copper (Cu), % 0 to 0.25
0 to 0.5
Iron (Fe), % 0 to 0.4
17 to 20
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0.4 to 0.8
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
40.3 to 53.8
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
0.2 to 1.0
Zinc (Zn), % 0.4 to 0.8
0
Residuals, % 0 to 0.15
0