MakeItFrom.com
Menu (ESC)

5070 Aluminum vs. EN AC-47000 Aluminum

Both 5070 aluminum and EN AC-47000 aluminum are aluminum alloys. They have 87% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5070 aluminum and the bottom bar is EN AC-47000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
73
Elongation at Break, % 20
1.7
Fatigue Strength, MPa 150
68
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 300
180
Tensile Strength: Yield (Proof), MPa 140
97

Thermal Properties

Latent Heat of Fusion, J/g 390
570
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
590
Melting Onset (Solidus), °C 550
570
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
33
Electrical Conductivity: Equal Weight (Specific), % IACS 100
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.8
7.7
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1170
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
2.5
Resilience: Unit (Modulus of Resilience), kJ/m3 150
65
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 50
54
Strength to Weight: Axial, points 31
19
Strength to Weight: Bending, points 37
27
Thermal Diffusivity, mm2/s 53
55
Thermal Shock Resistance, points 14
8.3

Alloy Composition

Aluminum (Al), % 92.4 to 95.7
82.1 to 89.5
Chromium (Cr), % 0 to 0.3
0 to 0.1
Copper (Cu), % 0 to 0.25
0 to 1.0
Iron (Fe), % 0 to 0.4
0 to 0.8
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 3.5 to 4.5
0 to 0.35
Manganese (Mn), % 0.4 to 0.8
0.050 to 0.55
Nickel (Ni), % 0
0 to 0.3
Silicon (Si), % 0 to 0.25
10.5 to 13.5
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.15
0 to 0.2
Zinc (Zn), % 0.4 to 0.8
0 to 0.55
Residuals, % 0
0 to 0.25