MakeItFrom.com
Menu (ESC)

5070 Aluminum vs. EN AC-51200 Aluminum

Both 5070 aluminum and EN AC-51200 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5070 aluminum and the bottom bar is EN AC-51200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
67
Elongation at Break, % 20
1.1
Fatigue Strength, MPa 150
100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
25
Tensile Strength: Ultimate (UTS), MPa 300
220
Tensile Strength: Yield (Proof), MPa 140
150

Thermal Properties

Latent Heat of Fusion, J/g 390
410
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 550
570
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 130
92
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
22
Electrical Conductivity: Equal Weight (Specific), % IACS 100
74

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.8
9.6
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
2.2
Resilience: Unit (Modulus of Resilience), kJ/m3 150
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 31
24
Strength to Weight: Bending, points 37
31
Thermal Diffusivity, mm2/s 53
39
Thermal Shock Resistance, points 14
10

Alloy Composition

Aluminum (Al), % 92.4 to 95.7
84.5 to 92
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.25
0 to 0.1
Iron (Fe), % 0 to 0.4
0 to 1.0
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 3.5 to 4.5
8.0 to 10.5
Manganese (Mn), % 0.4 to 0.8
0 to 0.55
Nickel (Ni), % 0
0 to 0.1
Silicon (Si), % 0 to 0.25
0 to 2.5
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.15
0 to 0.2
Zinc (Zn), % 0.4 to 0.8
0 to 0.25
Residuals, % 0
0 to 0.15