MakeItFrom.com
Menu (ESC)

5070 Aluminum vs. CC761S Brass

5070 aluminum belongs to the aluminum alloys classification, while CC761S brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5070 aluminum and the bottom bar is CC761S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 20
8.7
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
42
Tensile Strength: Ultimate (UTS), MPa 300
540
Tensile Strength: Yield (Proof), MPa 140
340

Thermal Properties

Latent Heat of Fusion, J/g 390
260
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
960
Melting Onset (Solidus), °C 550
910
Specific Heat Capacity, J/kg-K 900
410
Thermal Conductivity, W/m-K 130
27
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
40
Electrical Conductivity: Equal Weight (Specific), % IACS 100
43

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
27
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 8.8
2.7
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1170
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
41
Resilience: Unit (Modulus of Resilience), kJ/m3 150
530
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 31
18
Strength to Weight: Bending, points 37
18
Thermal Diffusivity, mm2/s 53
8.0
Thermal Shock Resistance, points 14
19

Alloy Composition

Aluminum (Al), % 92.4 to 95.7
0 to 0.1
Antimony (Sb), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.25
78 to 83
Iron (Fe), % 0 to 0.4
0 to 0.6
Lead (Pb), % 0
0 to 0.8
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0.4 to 0.8
0 to 0.2
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.25
3.0 to 5.0
Tin (Sn), % 0
0 to 0.3
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0.4 to 0.8
8.9 to 19
Residuals, % 0 to 0.15
0