MakeItFrom.com
Menu (ESC)

5070 Aluminum vs. C91700 Bronze

5070 aluminum belongs to the aluminum alloys classification, while C91700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5070 aluminum and the bottom bar is C91700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 20
13
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
41
Tensile Strength: Ultimate (UTS), MPa 300
330
Tensile Strength: Yield (Proof), MPa 140
170

Thermal Properties

Latent Heat of Fusion, J/g 390
190
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
1020
Melting Onset (Solidus), °C 550
850
Specific Heat Capacity, J/kg-K 900
370
Thermal Conductivity, W/m-K 130
71
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
10
Electrical Conductivity: Equal Weight (Specific), % IACS 100
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 8.8
3.9
Embodied Energy, MJ/kg 150
63
Embodied Water, L/kg 1170
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
35
Resilience: Unit (Modulus of Resilience), kJ/m3 150
140
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 31
11
Strength to Weight: Bending, points 37
12
Thermal Diffusivity, mm2/s 53
22
Thermal Shock Resistance, points 14
12

Alloy Composition

Aluminum (Al), % 92.4 to 95.7
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.25
84.2 to 87.5
Iron (Fe), % 0 to 0.4
0 to 0.2
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0.4 to 0.8
0
Nickel (Ni), % 0
1.2 to 2.0
Phosphorus (P), % 0
0 to 0.3
Silicon (Si), % 0 to 0.25
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
11.3 to 12.5
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0.4 to 0.8
0 to 0.25
Residuals, % 0 to 0.15
0