MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. 204.0 Aluminum

Both 5082 aluminum and 204.0 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is 204.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
71
Elongation at Break, % 1.1
5.7 to 7.8
Fatigue Strength, MPa 110 to 130
63 to 77
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
27
Tensile Strength: Ultimate (UTS), MPa 380 to 400
230 to 340
Tensile Strength: Yield (Proof), MPa 300 to 340
180 to 220

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 560
580
Specific Heat Capacity, J/kg-K 910
880
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 24
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
29 to 34
Electrical Conductivity: Equal Weight (Specific), % IACS 110
87 to 100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
3.0
Embodied Carbon, kg CO2/kg material 8.9
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 4.3
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 870
220 to 350
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
46
Strength to Weight: Axial, points 39 to 41
21 to 31
Strength to Weight: Bending, points 43 to 45
28 to 36
Thermal Diffusivity, mm2/s 54
46
Thermal Shock Resistance, points 17 to 18
12 to 18

Alloy Composition

Aluminum (Al), % 93.5 to 96
93.4 to 95.5
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.15
4.2 to 5.0
Iron (Fe), % 0 to 0.35
0 to 0.35
Magnesium (Mg), % 4.0 to 5.0
0.15 to 0.35
Manganese (Mn), % 0 to 0.15
0 to 0.1
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 0 to 0.2
0 to 0.2
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.1
0.15 to 0.3
Zinc (Zn), % 0 to 0.25
0 to 0.1
Residuals, % 0
0 to 0.15