MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. ACI-ASTM CA6N Steel

5082 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CA6N steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is ACI-ASTM CA6N steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 1.1
17
Fatigue Strength, MPa 110 to 130
640
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
75
Tensile Strength: Ultimate (UTS), MPa 380 to 400
1080
Tensile Strength: Yield (Proof), MPa 300 to 340
1060

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 180
740
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 560
1400
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 130
23
Thermal Expansion, µm/m-K 24
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.9
2.5
Embodied Energy, MJ/kg 150
35
Embodied Water, L/kg 1180
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 4.3
180
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 870
2900
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 39 to 41
38
Strength to Weight: Bending, points 43 to 45
30
Thermal Diffusivity, mm2/s 54
6.1
Thermal Shock Resistance, points 17 to 18
40

Alloy Composition

Aluminum (Al), % 93.5 to 96
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0 to 0.15
10.5 to 12.5
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0 to 0.35
77.9 to 83.5
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0 to 0.15
0 to 0.5
Nickel (Ni), % 0
6.0 to 8.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0