MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. ASTM A369 Grade FP9

5082 aluminum belongs to the aluminum alloys classification, while ASTM A369 grade FP9 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is ASTM A369 grade FP9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 1.1
20
Fatigue Strength, MPa 110 to 130
160
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
75
Shear Strength, MPa 210 to 230
300
Tensile Strength: Ultimate (UTS), MPa 380 to 400
470
Tensile Strength: Yield (Proof), MPa 300 to 340
240

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 180
600
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 560
1410
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 130
26
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
6.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.9
2.0
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 1180
87

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 4.3
80
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 870
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 39 to 41
17
Strength to Weight: Bending, points 43 to 45
17
Thermal Diffusivity, mm2/s 54
6.9
Thermal Shock Resistance, points 17 to 18
13

Alloy Composition

Aluminum (Al), % 93.5 to 96
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.15
8.0 to 10
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0 to 0.35
87.1 to 90.3
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0 to 0.15
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0.5 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0