MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. ASTM A372 Grade M Steel

5082 aluminum belongs to the aluminum alloys classification, while ASTM A372 grade M steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is ASTM A372 grade M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 1.1
18 to 21
Fatigue Strength, MPa 110 to 130
450 to 520
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Shear Strength, MPa 210 to 230
510 to 570
Tensile Strength: Ultimate (UTS), MPa 380 to 400
810 to 910
Tensile Strength: Yield (Proof), MPa 300 to 340
660 to 770

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 180
450
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 560
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
46
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
5.0
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.9
2.0
Embodied Energy, MJ/kg 150
27
Embodied Water, L/kg 1180
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 4.3
160
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 870
1140 to 1580
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 39 to 41
29 to 32
Strength to Weight: Bending, points 43 to 45
24 to 27
Thermal Diffusivity, mm2/s 54
12
Thermal Shock Resistance, points 17 to 18
24 to 27

Alloy Composition

Aluminum (Al), % 93.5 to 96
0
Carbon (C), % 0
0 to 0.23
Chromium (Cr), % 0 to 0.15
1.5 to 2.0
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0 to 0.35
92.5 to 95.1
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0 to 0.15
0.2 to 0.4
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0
2.8 to 3.9
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.2
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0
0 to 0.080
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0

Comparable Variants