MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. ASTM Grade HT Steel

5082 aluminum belongs to the aluminum alloys classification, while ASTM grade HT steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is ASTM grade HT steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 1.1
4.6
Fatigue Strength, MPa 110 to 130
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
76
Tensile Strength: Ultimate (UTS), MPa 380 to 400
500
Tensile Strength: Yield (Proof), MPa 300 to 340
270

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 180
1010
Melting Completion (Liquidus), °C 640
1390
Melting Onset (Solidus), °C 560
1340
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.9
5.4
Embodied Energy, MJ/kg 150
76
Embodied Water, L/kg 1180
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 4.3
19
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 870
180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 39 to 41
18
Strength to Weight: Bending, points 43 to 45
18
Thermal Diffusivity, mm2/s 54
3.2
Thermal Shock Resistance, points 17 to 18
12

Alloy Composition

Aluminum (Al), % 93.5 to 96
0
Carbon (C), % 0
0.35 to 0.75
Chromium (Cr), % 0 to 0.15
15 to 19
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0 to 0.35
38.2 to 51.7
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0 to 0.15
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
33 to 37
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 2.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0