MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. AWS E308LMo

5082 aluminum belongs to the aluminum alloys classification, while AWS E308LMo belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is AWS E308LMo.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 1.1
40
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
78
Tensile Strength: Ultimate (UTS), MPa 380 to 400
580

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 560
1400
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 24
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.9
3.8
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1180
160

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 39 to 41
21
Strength to Weight: Bending, points 43 to 45
20
Thermal Diffusivity, mm2/s 54
4.2
Thermal Shock Resistance, points 17 to 18
15

Alloy Composition

Aluminum (Al), % 93.5 to 96
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0 to 0.15
18 to 21
Copper (Cu), % 0 to 0.15
0 to 0.75
Iron (Fe), % 0 to 0.35
59.6 to 70.5
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0 to 0.15
0.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
9.0 to 12
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0