MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. AWS E3155

5082 aluminum belongs to the aluminum alloys classification, while AWS E3155 belongs to the iron alloys. There are 22 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is AWS E3155.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
210
Elongation at Break, % 1.1
23
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
81
Tensile Strength: Ultimate (UTS), MPa 380 to 400
770

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 560
1410
Specific Heat Capacity, J/kg-K 910
450
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 24
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 8.9
7.7
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1180
300

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 39 to 41
26
Strength to Weight: Bending, points 43 to 45
22
Thermal Diffusivity, mm2/s 54
3.3
Thermal Shock Resistance, points 17 to 18
20

Alloy Composition

Aluminum (Al), % 93.5 to 96
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.15
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 0 to 0.15
0 to 0.75
Iron (Fe), % 0 to 0.35
23.3 to 36.3
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0 to 0.15
1.0 to 2.5
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0