MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. EN 1.4869 Casting Alloy

5082 aluminum belongs to the aluminum alloys classification, while EN 1.4869 casting alloy belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is EN 1.4869 casting alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
210
Elongation at Break, % 1.1
5.7
Fatigue Strength, MPa 110 to 130
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
80
Tensile Strength: Ultimate (UTS), MPa 380 to 400
540
Tensile Strength: Yield (Proof), MPa 300 to 340
310

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 180
1200
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 560
1390
Specific Heat Capacity, J/kg-K 910
460
Thermal Conductivity, W/m-K 130
10
Thermal Expansion, µm/m-K 24
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.9
7.7
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1180
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 4.3
26
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 870
230
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 39 to 41
18
Strength to Weight: Bending, points 43 to 45
17
Thermal Diffusivity, mm2/s 54
2.6
Thermal Shock Resistance, points 17 to 18
14

Alloy Composition

Aluminum (Al), % 93.5 to 96
0
Carbon (C), % 0
0.45 to 0.55
Chromium (Cr), % 0 to 0.15
24 to 26
Cobalt (Co), % 0
14 to 16
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0 to 0.35
11.4 to 23.6
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Nickel (Ni), % 0
33 to 37
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
4.0 to 6.0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0