MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. EN 1.4889 Cast Nickel

5082 aluminum belongs to the aluminum alloys classification, while EN 1.4889 cast nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is EN 1.4889 cast nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 1.1
3.4
Fatigue Strength, MPa 110 to 130
110
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 25
79
Tensile Strength: Ultimate (UTS), MPa 380 to 400
500
Tensile Strength: Yield (Proof), MPa 300 to 340
270

Thermal Properties

Latent Heat of Fusion, J/g 400
350
Maximum Temperature: Mechanical, °C 180
1160
Melting Completion (Liquidus), °C 640
1360
Melting Onset (Solidus), °C 560
1320
Specific Heat Capacity, J/kg-K 910
480
Thermal Expansion, µm/m-K 24
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.9
8.5
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1180
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 4.3
14
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 870
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 39 to 41
18
Strength to Weight: Bending, points 43 to 45
18
Thermal Shock Resistance, points 17 to 18
13

Alloy Composition

Aluminum (Al), % 93.5 to 96
0
Carbon (C), % 0
0.35 to 0.45
Chromium (Cr), % 0 to 0.15
32.5 to 37.5
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0 to 0.35
10.5 to 21.2
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0 to 0.15
1.0 to 1.5
Nickel (Ni), % 0
42 to 46
Niobium (Nb), % 0
1.5 to 2.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
1.5 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0