MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. EN 1.7027 Steel

5082 aluminum belongs to the aluminum alloys classification, while EN 1.7027 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is EN 1.7027 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Tensile Strength: Ultimate (UTS), MPa 380 to 400
490 to 1460

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 180
420
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 560
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
45
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.3
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.9
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1180
51

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 39 to 41
17 to 52
Strength to Weight: Bending, points 43 to 45
18 to 36
Thermal Diffusivity, mm2/s 54
12
Thermal Shock Resistance, points 17 to 18
14 to 43

Alloy Composition

Aluminum (Al), % 93.5 to 96
0 to 0.050
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0 to 0.15
0.9 to 1.2
Copper (Cu), % 0 to 0.15
0 to 0.3
Iron (Fe), % 0 to 0.35
97.1 to 98.5
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0 to 0.15
0.6 to 0.9
Oxygen (O), % 0
0 to 0.0020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.2
0 to 0.4
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0