MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. EN 2.4632 Nickel

5082 aluminum belongs to the aluminum alloys classification, while EN 2.4632 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is EN 2.4632 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 1.1
17
Fatigue Strength, MPa 110 to 130
430
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
76
Shear Strength, MPa 210 to 230
770
Tensile Strength: Ultimate (UTS), MPa 380 to 400
1250
Tensile Strength: Yield (Proof), MPa 300 to 340
780

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 180
1010
Melting Completion (Liquidus), °C 640
1340
Melting Onset (Solidus), °C 560
1290
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 8.9
9.4
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1180
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 4.3
180
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 870
1570
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 39 to 41
42
Strength to Weight: Bending, points 43 to 45
31
Thermal Diffusivity, mm2/s 54
3.3
Thermal Shock Resistance, points 17 to 18
39

Alloy Composition

Aluminum (Al), % 93.5 to 96
1.0 to 2.0
Boron (B), % 0
0 to 0.020
Carbon (C), % 0
0 to 0.13
Chromium (Cr), % 0 to 0.15
18 to 21
Cobalt (Co), % 0
15 to 21
Copper (Cu), % 0 to 0.15
0 to 0.2
Iron (Fe), % 0 to 0.35
0 to 1.5
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Nickel (Ni), % 0
49 to 64
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
2.0 to 3.0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.15
0