MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. EN 2.4815 Cast Nickel

5082 aluminum belongs to the aluminum alloys classification, while EN 2.4815 cast nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is EN 2.4815 cast nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 1.1
3.4
Fatigue Strength, MPa 110 to 130
89
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
74
Tensile Strength: Ultimate (UTS), MPa 380 to 400
460
Tensile Strength: Yield (Proof), MPa 300 to 340
220

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 640
1510
Melting Onset (Solidus), °C 560
1450
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
25
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
47
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 8.9
7.9
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1180
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 4.3
13
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 870
130
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 39 to 41
15
Strength to Weight: Bending, points 43 to 45
16
Thermal Diffusivity, mm2/s 54
6.4
Thermal Shock Resistance, points 17 to 18
17

Alloy Composition

Aluminum (Al), % 93.5 to 96
0
Carbon (C), % 0
0.35 to 0.65
Chromium (Cr), % 0 to 0.15
12 to 18
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0 to 0.35
9.8 to 28.7
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0 to 0.15
0 to 2.0
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0
58 to 66
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0