MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. EN AC-48100 Aluminum

Both 5082 aluminum and EN AC-48100 aluminum are aluminum alloys. They have 77% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is EN AC-48100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
76
Elongation at Break, % 1.1
1.1
Fatigue Strength, MPa 110 to 130
120 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
29
Tensile Strength: Ultimate (UTS), MPa 380 to 400
240 to 330
Tensile Strength: Yield (Proof), MPa 300 to 340
190 to 300

Thermal Properties

Latent Heat of Fusion, J/g 400
640
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
580
Melting Onset (Solidus), °C 560
470
Specific Heat Capacity, J/kg-K 910
880
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 24
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
27
Electrical Conductivity: Equal Weight (Specific), % IACS 110
87

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 8.9
7.3
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1180
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 4.3
2.3 to 3.6
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 870
250 to 580
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
51
Strength to Weight: Axial, points 39 to 41
24 to 33
Strength to Weight: Bending, points 43 to 45
31 to 38
Thermal Diffusivity, mm2/s 54
55
Thermal Shock Resistance, points 17 to 18
11 to 16

Alloy Composition

Aluminum (Al), % 93.5 to 96
72.1 to 79.8
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.15
4.0 to 5.0
Iron (Fe), % 0 to 0.35
0 to 1.3
Magnesium (Mg), % 4.0 to 5.0
0.25 to 0.65
Manganese (Mn), % 0 to 0.15
0 to 0.5
Nickel (Ni), % 0
0 to 0.3
Silicon (Si), % 0 to 0.2
16 to 18
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.1
0 to 0.25
Zinc (Zn), % 0 to 0.25
0 to 1.5
Residuals, % 0
0 to 0.25