MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. G-CoCr28 Cobalt

5082 aluminum belongs to the aluminum alloys classification, while G-CoCr28 cobalt belongs to the cobalt alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is G-CoCr28 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
210
Elongation at Break, % 1.1
6.7
Fatigue Strength, MPa 110 to 130
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
83
Tensile Strength: Ultimate (UTS), MPa 380 to 400
560
Tensile Strength: Yield (Proof), MPa 300 to 340
260

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 180
1200
Melting Completion (Liquidus), °C 640
1330
Melting Onset (Solidus), °C 560
1270
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
8.5
Thermal Expansion, µm/m-K 24
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
100
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.9
6.2
Embodied Energy, MJ/kg 150
84
Embodied Water, L/kg 1180
440

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 4.3
31
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 870
160
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 39 to 41
19
Strength to Weight: Bending, points 43 to 45
19
Thermal Diffusivity, mm2/s 54
2.2
Thermal Shock Resistance, points 17 to 18
14

Alloy Composition

Aluminum (Al), % 93.5 to 96
0
Carbon (C), % 0
0.050 to 0.25
Chromium (Cr), % 0 to 0.15
27 to 30
Cobalt (Co), % 0
48 to 52
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0 to 0.35
9.7 to 24.5
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0 to 0.15
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 4.0
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0.5 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0