MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. Nickel 200

5082 aluminum belongs to the aluminum alloys classification, while nickel 200 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is nickel 200.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
180
Elongation at Break, % 1.1
23 to 44
Fatigue Strength, MPa 110 to 130
120 to 350
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 25
70
Shear Strength, MPa 210 to 230
300 to 340
Tensile Strength: Ultimate (UTS), MPa 380 to 400
420 to 540
Tensile Strength: Yield (Proof), MPa 300 to 340
120 to 370

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 180
900
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 560
1440
Specific Heat Capacity, J/kg-K 910
450
Thermal Conductivity, W/m-K 130
69
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
18
Electrical Conductivity: Equal Weight (Specific), % IACS 110
18

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
65
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.9
11
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 4.3
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 870
42 to 370
Stiffness to Weight: Axial, points 14
11
Stiffness to Weight: Bending, points 51
21
Strength to Weight: Axial, points 39 to 41
13 to 17
Strength to Weight: Bending, points 43 to 45
14 to 17
Thermal Diffusivity, mm2/s 54
17
Thermal Shock Resistance, points 17 to 18
13 to 16

Alloy Composition

Aluminum (Al), % 93.5 to 96
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.15
0 to 0.25
Iron (Fe), % 0 to 0.35
0 to 0.4
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0 to 0.15
0 to 0.35
Nickel (Ni), % 0
99 to 100
Silicon (Si), % 0 to 0.2
0 to 0.35
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0