MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. Nickel 725

5082 aluminum belongs to the aluminum alloys classification, while nickel 725 belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is nickel 725.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 1.1
34
Fatigue Strength, MPa 110 to 130
260
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
78
Shear Strength, MPa 210 to 230
580
Tensile Strength: Ultimate (UTS), MPa 380 to 400
860
Tensile Strength: Yield (Proof), MPa 300 to 340
350

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 180
980
Melting Completion (Liquidus), °C 640
1340
Melting Onset (Solidus), °C 560
1270
Specific Heat Capacity, J/kg-K 910
440
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.9
13
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1180
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 4.3
240
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 870
300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 39 to 41
28
Strength to Weight: Bending, points 43 to 45
24
Thermal Shock Resistance, points 17 to 18
23

Alloy Composition

Aluminum (Al), % 93.5 to 96
0 to 0.35
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.15
19 to 22.5
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0 to 0.35
2.3 to 15.3
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0 to 0.15
0 to 0.35
Molybdenum (Mo), % 0
7.0 to 9.5
Nickel (Ni), % 0
55 to 59
Niobium (Nb), % 0
2.8 to 4.0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.2
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
1.0 to 1.7
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0