MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. SAE-AISI 1023 Steel

5082 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1023 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is SAE-AISI 1023 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 1.1
17 to 29
Fatigue Strength, MPa 110 to 130
180 to 270
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Shear Strength, MPa 210 to 230
280 to 300
Tensile Strength: Ultimate (UTS), MPa 380 to 400
430 to 480
Tensile Strength: Yield (Proof), MPa 300 to 340
240 to 410

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 560
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
53
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.9
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1180
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 4.3
77 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 870
150 to 450
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 39 to 41
15 to 17
Strength to Weight: Bending, points 43 to 45
16 to 17
Thermal Diffusivity, mm2/s 54
14
Thermal Shock Resistance, points 17 to 18
14 to 15

Alloy Composition

Aluminum (Al), % 93.5 to 96
0
Carbon (C), % 0
0.2 to 0.25
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0 to 0.35
99.06 to 99.5
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0 to 0.15
0.3 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0